Чему равен косинус нуля

Чему равен косинус нуля

Таблица косинусов — это записанные в таблицу посчитанные значения косинусов углов от 0° до 360°. Используя таблицу косинусов Вы сможете провести расчеты даже если под руками не окажется инженерного калькулятора. Чтобы узнать значение косинуса от нужного Вам угла, достаточно найти его в таблице или вычислить с помощью калькулятора.

Вот если косинус 90° равен одному, то логично, что косинус 180° равен двум, но ведь так не может быть, или может? А чему тогда равен косинус нуля! Как угол может быть равен чему то если угла и нет(

Вы совсем запутались, косинус 90° равен нулю.

Не угол равен чему-то, а значение функции. Это разные вещи, и похоже, что вы их путаете. Мы вычисляем значение функции косинус, при разных величинах угла, а угол может изменяться от 0° до 360°.

График косинуса выглядит вот так


Из рисунка видно, что функция периодичная и изменяется на интервале от [-п, +п]. На промежутке от [п, 3п] график косинуса полностью повториться, и так до бесконечности. Но функция косинус не может иметь значения больше +1, и меньше -1.

Косинус нуля будет равен 1, посмотрите на график

Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).

Аргумент и значение

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.

1) Пусть дан угол и нужно определить косинус этого угла.

2) Достроим на этом угле любой прямоугольный треугольник.

3) Измерив, нужные стороны, можем вычислить косинус.

Косинус острого угла больше (0) и меньше (1)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Читайте также:  Как приготовить попугая птицу рецепт

Косинус числа

Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи : (frac<π><2>) , (frac<3π><4>) , (-2π).

Например, для числа (frac<π><6>) — косинус будет равен (frac<sqrt<3>><2>) . А для числа (-) (frac<3π><4>) он будет равен (-) (frac<sqrt<2>><2>) (приблизительно (-0,71)).

Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице .

Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Читайте также:  Реле времени рп21м 003в1

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

— там, где значения на оси от (0) до (1), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от (0) до (-1), косинус будет иметь знак минус (II и III четверти – фиолетовая область).

Пример. Определите знак (cos 1).
Решение: Найдем (1) на тригонометрическом круге. Будем отталкиваться от того, что (π=3,14). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).

Если провести перпендикуляр к оси косинусов, то станет очевидно, что (cos⁡1) – положителен.
Ответ: плюс.

Связь с другими тригонометрическими функциями:

синусом того же угла (или числа): основным тригонометрическим тождеством (sin^2⁡x+cos^2⁡x=1)
тангенсом того же угла (или числа): формулой (1+tg^2⁡x=) (frac<1><cos^2⁡x>)
котангенсом и синусом того же угла (или числа): формулой (ctgx=) (frac<cos><sin⁡x>)
Другие наиболее часто применяемые формулы смотри здесь .

Функция (y=cos)

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения косинуса, мы получим следующий график:

График данной функции называется косинусоида и обладает следующими свойствами:

— область определения – любое значение икса: (D(cos <⁡x>)=R)
— область значений – от (-1) до (1) включительно: (E(cos )=[-1;1])
— четная: (cos⁡(-x)=cos
)
— периодическая с периодом (2π): (cos⁡(x+2π)=cos
)
— точки пересечения с осями координат:
ось абсцисс: (() (frac<π><2>) (+πn),(;0)), где (n ϵ Z)
ось ординат: ((0;1))
— промежутки знакопостоянства:
функция положительна на интервалах: ((-) (frac<π><2>) (+2πn;) (frac<π><2>) (+2πn)), где (n ϵ Z)
функция отрицательна на интервалах: (() (frac<π><2>) (+2πn;) (frac<3π><2>) (+2πn)), где (n ϵ Z)
— промежутки возрастания и убывания:
функция возрастает на интервалах: ((π+2πn;2π+2πn)), где (n ϵ Z)
функция убывает на интервалах: ((2πn;π+2πn)), где (n ϵ Z)
— максимумы и минимумы функции:
функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)
функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).

Ссылка на основную публикацию
Чем утеплить расширительный бак на чердаке
В данной системе поддерживается атмосферное давление, так как она напрямую сообщается с атмосферой через расширительный бак открытого типа. Такой бак...
Чем пропитывать дерево от гниения
Древесина — доступный, экологичный стройматериал с прекрасным внешним видом. Современные материалы (керамзитобетон, пенобетон) с недавних пор стали часто применяться для...
Чем просверлить бетонную плиту
Необходимость повесить люстру, установить навесные шкафчики, розетку и т.д., рано или поздно возникает в жизни каждого владельца жилплощади. Учитывая то,...
Чем утеплять баню внутри из блока
Полноценное утепление бани из блоков позволяет улучшить эксплуатационные возможности строения и снизить расходы, связанные с его обслуживанием. Благодаря расширению ассортимента...
Adblock detector