Эхз газопровода принцип работы

Эхз газопровода принцип работы

Средства противокоррозионной защиты

1. Коррозия подземных трубопроводов и защита от нее

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного — 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты
Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Читайте также:  Почему микроволновка стала плохо греть

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

Как создать эффективную систему ЭХЗ (электрохимической защиты) на действующих нефтегазопромысловых трубопроводах — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Эффективность работы систем ЭХЗ доказана годами эксплуатации подземных сооружений по всему миру. В частности, согласно ГОСТ Р 51164-98 магистральные нефтепроводы в нашей стране подлежат обязательной электрохимической защите. Достаточно хорошее изоляционное покрытие таких трубопроводов позволяет поддерживать необходимый (нормативный) уровень защитного потенциала по всей протяженности при сравнительно низких энергозатратах. Но, что делать, если подземное сооружение имеет плохое изоляционное покрытие или не имеет его вовсе, как, например, многие промысловые трубопроводы?

Конечно, в случае «промыслов» среда транспортируемого продукта часто «съедает» трубопровод изнутри быстрее, нежели наружная коррозия. Но, бывают ситуации, когда отказы по наружной коррозии происходят гораздо чаще, чем по внутренней. Связано это, в большинстве случаев, с действием блуждающих токов или с образованием мощных макрогальванических пар с небольшой площадью анодного участка, а значит с большой плотностью тока коррозии. Так же, в последнее время эффективным способом борьбы с внутренней коррозией является ингибирование, что позволяет трубопроводу «дожить» до отказа по причине наружной коррозии. Все это делает весьма актуальным вопрос о противокоррозионной защите наружной поверхности промысловых трубопроводов.

Сама же задача электрохимической защиты наружной поверхности трубопровода принципиально сводится к устранению анодных зон путем повышения потенциала трубопровода (по абсолютному значению) до величины, достаточной для того, чтобы остановить анодное растворение, при этом поверхность трубопровода будет содержать лишь катодные участки. Методов для решения этой задачи, по сути, два:

  1. Протекторная защита: установка протекторных групп на коррозионно-опасные участки;
  2. Катодная защита: принудительная катодная поляризация всей поверхности трубопровода посредством источника постоянного тока (так называемой СКЗ — станции катодной защиты).

Для линейных магистральных трубопроводов методы проектирования систем ЭХЗ хорошо известны и успешно применяются. Однако на нефтегазопромысловых трубопроводах практически нет примеров успешных и эффективных проектов ЭХЗ. Почему же это происходит?

Во-первых, для систем нефтегазопромысловых трубопроводов характерно наличие большого количества параллельных и пересекающихся объектов. Такое разветвленное строение трубопроводной системы приводит к существенному усложнению наиболее энергетически выгодного маршрута движения защитного тока в цепи электрохимической защиты, и как следствие, к тому, что часть участков трубопроводов не получают необходимой защиты, а некоторые участки даже могут подвергаться разрушению вследствие действия токов ЭХЗ в качестве блуждающих токов.

Во-вторых, отсутствует (частично или полностью) полноценное изоляционное покрытие на промысловых объектах. Все расчетные формулы систем ЭХЗ для трубопроводов содержат различные показатели, связанные с сопротивлением изоляционного покрытия, и все они подразумевают, что изоляционное покрытие на трубопроводе по меньшей мере есть, и его значение составляет 5-10 КОм•м2. Если же изоляционного покрытия нет, то формулы лишаются важного буферного элемента и становятся слишком чувствительными к незначительным изменениям других исходных данных. Дополнительная сложность возникает при суперпозиции обеих описанных проблем. В теории проектирования ЭХЗ принято взамен нескольких трубопроводов принимать в расчете ряд усредненных параметров условного эквивалентного трубопровода. Вот пример расчета переходного эквивалентного сопротивления двух трубопроводов:

Когда все усредняемые показатели близки (разница в электрических характеристиках трубопроводов 2-3 раза), то проблем нет. А вот если эта разница превышает 10 раз, то вместо математически эквивалентной величины получается «средняя температура по больнице», и, соответственно, спроектированные таким образом системы ЭХЗ промысловых трубопроводов могут работать крайне неэффективно.

Пример трубопровода с изношенной битумной изоляцией

Еще одной распространенной ошибкой является неправильный выбор самих средств ЭХЗ в проекте. Применение изолирующих вставок, например, при их некорректном расположении, приводит к образованию дополнительных анодных зон, а не к улучшению показателей катодной защищенности трубопроводов. Протекторные установки (ПУ) на промысловых трубопроводах также нужно применять очень осмотрительно. Протекторы создают малую зону защиты и слабо поддаются регулировке, что, в условиях защиты оголенного или плохо изолированного трубопровода, неизбежно приведет к их преждевременному износу, иными словами, они просто быстро «выгорят». Так же дискретность установки группы протекторов на таком трубопроводе будет весьма высокой, что не приемлемо ни технически (заболоченная местность, доступ к протекторной установке), ни экономически (стоимость, монтаж). Поэтому, в случае промысловых трубопроводных систем, катодная защита — гораздо более мощный метод в плане возможности изменения уровня защитного потенциала и увеличения зоны защиты. В данном случае все зависит, в первую очередь, от источника тока — СКЗ. Чем больше запас по току у преобразователя, тем на большее значение возможно поднять потенциал. Но тут следует понимать, что растворение анода (анодного заземления — неотъемлемой части катодной защиты) будет пропорционально силе тока в цепи.

Правильный выбор анодного заземления, как одного из самых дорогостоящих компонентов системы УКЗ (установки катодной защиты), является наиболее сложным этапом при проектировании систем ЭХЗ. Например, в условиях нефтегазового месторождения при защите сетей нефтесбора или водоводов выбор вертикальных глубинных анодов часто нежелателен, т.к. практически весь ток с такого анода уйдет в обсадную колонну скважины, которая электрически соединена с нефтесбором. Однако, если, например, использовать ПГА (протяженный гибкий анод), то шансы защитить трубопровод резко возрастают, т.к. анод такого типа прокладывается вдоль защищаемого трубопровода на сравнительно небольшом расстоянии, причем создаваемое им поле защитного тока практически полностью замыкается на сам трубопровод.

Таким образом, проектирование системы ЭХЗ разветвленных сетей действующих промысловых трубопроводов с разнообразным состоянием изоляционного покрытия практически невозможно в камеральных условиях. Помимо вышеизложенного, это связано с тем, что неизвестно какие в точности электрические параметры имеют защищаемые объекты, степень их взаимного экранирующего влияния и др.

Поэтому, для решения этой задачи нами разработан собственный метод проектирования ЭХЗ существующих сложных промысловых трубопроводных систем, основанный на выполнении предварительных опытных включений переносного преобразователя (мобильной СКЗ), скоммутированного с мобильными временными анодными заземлениями разных типов на всей протяженности защищаемого трубопровода. Это позволяет опытным путем установить наиболее эффективные виды анодных заземлений на конкретном объекте и определить необходимые токи СКЗ, и получаемые зоны защиты. На основании этих данных выбирается тип и дискретность расстановки УКЗ для достижения необходимых сдвигов потенциала для обеспечения полной защиты системы трубопроводов.

Читайте также:  Самая простая буржуйка для гаража
Испытания различных типов анодных заземлений на месторождении

Дополнительно с помощью опытных включений, в случае наличия коридора из двух и более трубопроводов, можно реализовать красивое и экономичное техническое решение по ЭХЗ — использование в качестве анодного заземления трубопроводов, выведенных из эксплуатации (причем неважно, находятся ли данные трубопроводы в изоляции или нет). В этом случае экономические затраты на закупку и монтаж анода сводятся к нулю, а эффективность работы такого анода превышает эффективность работы ПГА при прочих равных условиях.

Подключение опытной катодной станции к трубопроводу, выведенному из эксплуатации (фотография выполняемых работ и схемы возможных подключений)

Подготовка к проведению опытных включений заключается в уточнении месторасположения защищаемых трубопроводов, а так же всех трубопроводов, смежных с ними. Производятся измерения удельного сопротивления грунта и естественных потенциалов трубопровода. Затем, на основании полученных данных, осуществляется предварительная расстановка точек включения опытной СКЗ. Для коммутации преобразователя необходимо обеспечить надлежащий электрический контакт. В процессе проведения опытных включений количество точек включения СКЗ может корректироваться с учетом получаемых данных о сдвиге потенциала.

Таким образом, разработанная методика позволяет спроектировать систему ЭХЗ под конкретное месторождение, причем ее эффективность работы подтверждается в процессе коррозионных изысканий (опытных включений мобильной СКЗ). Следует отметить, что при применении нашей методики проектирования, небольшое удорожание этапа изысканий за счет проведения опытных включений с лихвой компенсируется экономией заказчика на закупку и установку лишних анодных заземлений, особенно если в качестве анодного заземления удается применить выведенные из эксплуатации трубопроводы. В заключение хочется сказать, что при тщательном и вдумчивом отношении к проектированию систем ЭХЗ нефтегазопромысловых трубопроводов, безусловно, можно добиться положительных результатов. Мы надеемся, что этот могущественный метод противокоррозионной защиты в ближайшие годы будет все чаще находить применение не только на линейных трубопроводах, но и на более сложных, разветвленных промысловых трубопроводных системах.

Хотите узнать больше о коррозии металлических конструкций и методах противокоррозионной защиты?

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

Катодная защита от коррозии трубопроводов: оборудование, принцип работы — статья

Принцип работы

Оборудование

Катодная защита от коррозии трубопроводов: оборудование, принцип работы — статья

Принцип работы

Оборудование

Катодная защита от коррозии трубопроводов: оборудование, принцип работы — статья

Принцип работы

Оборудование

Принцип возникновения вредного влияния систем ЭХЗ на сторонние объекты или как ЭХЗ может навредить — блуждающие токи, защита трубопроводов, коррозионное влияние, коррозия, система ЭХЗ, электрохимическая защита, электрохимическая коррозия, ЭХЗ

Электрохимическая защита от коррозии (ЭХЗ) — хорошо известное и могущественное оружие для защиты от электрохимической коррозии разнообразных объектов. Однако, как и всякий инструмент, она должна применяться обдуманно, иначе вред от ее использования может существенно превысить положительный эффект. Основным вредным последствием работы систем ЭХЗ, возникающим вследствие ошибок при проектировании и строительстве подобных систем, может быть ускоренная коррозия соседних с защищаемым металлических объектов. Обычно такая ситуация реализуется в многониточных близкорасположенных трубопроводных системах различного назначения, например, на нефтепромысловых трубопроводах, но может быть встречена и на других объектах, где выборочно применяются системы ЭХЗ, например, на промышленных площадках, нефтебазах и др.

Рис. 1. Распределение токов утечки с постороннего трубопровода при сближении с трубопроводом, защищенным катодными установками

Вредное влияние системы ЭХЗ защищаемого трубопровода на сторонние трубопроводы реализуется вследствие возникновения блуждающих токов. Величина такого тока может быть довольно велика, из практики до 50 А. Однако, сама по себе величина тока, протекающего на подземном сооружении, не определяет опасности коррозионного влияния. Существенной является плотность тока, которая возникает на анодных поверхностях при стекании тока с металлического сооружения в окружающую почву. Эта плотность зависит не только от величины тока, но и от площади поверхности анодной зоны. Согласно практике защиты подземных сооружений от блуждающих токов опасной средней суточной плотностью блуждающего тока для стальных трубопроводов считается 75 мА/м2.

При этом та часть металлического сооружения, из которой ток выходит в землю, является анодом, а та часть сооружения, где постоянный ток входит в него, является катодом. В анодных зонах при условии контакта сооружения с влажной почвой блуждающие токи вызывают электролиз и причиняют сооружению чрезвычайно большие коррозионные разрушения. Блуждающий ток в 1 А за один год «разъедает» в анодной зоне металлического сооружения около 9 кг железа.

Рис. 2. Повреждение трубопровода блуждающими токами

Скорость и интенсивность коррозии блуждающими токами совместно с почвенной коррозией особенно сильно возрастает при наличии частых и резких перепадов значений электрического сопротивления почв вдоль линейного сооружения. Объясняется это тем, что в этих условиях блуждающие и гальванические токи то входят в сооружение и проходят по нему, то выходят из сооружения и проходят по почве, создавая тем самым множество анодных и катодных зон. Установлено, что в почвах с высоким сопротивлением блуждающие токи более или менее полно собираются металлическим сооружением и протекают по нему. На участках, где почва имеет низкое сопротивление, эти токи покидают сооружение и частично переходят в почву. Места наиболее сильных утечек тока из сооружения, совпадающие с участками низкого сопротивления почвы, характеризуются наиболее интенсивными явлениями коррозии.

Таким образом, при наличии систем ЭХЗ на одном трубопроводе в коридоре и при отсутствии компенсирующих мероприятий сторонний трубопровод, находясь в зоне распространения токов ЭХЗ, привлекает на себя эти токи, передает их как проводник более низкого омического сопротивления и возвращает их через землю к источнику в анодных зонах, в которых и происходит его интенсивное разрушение (Рис. 1).

Решение подобной проблемы на существующих объектах должно начинаться с комплексного электрометрического обследования системы трубопроводов для оценки непосредственной опасности коррозионного разрушения стороннего трубопровода и поиска существующих анодных зон. После этого необходимо либо организовать полноценную совместную защиту объектов, либо разработать технические решения по снятию существующего вредного влияния. Последнее, кстати, лучше всего получается при проведении предварительных полевых испытаний применяемых решений, так как очевидная установка перемычек в районе точке дренажа действующей катодной станции может просто переместить анодную зону на соседний участок трубы, тем самым стимулировав электрокоррозию в другом месте. А самый лучший способ избежать таких проблем, это конечно предусмотреть все заранее при проектировании объекта на основании качественных, а не формальных инженерных коррозионных изысканий. Сделать хорошо сразу всегда проще, чем переделывать уже построенный объект!

Трубопроводные магистрали – это на сегодняшний день наиболее распространенное средство для осуществления транспортировки носителей энергии. Очевидный их недостаток – подверженность образованию ржавчины. Для этого выполняется катодная защита магистральных трубопроводов от коррозии. В чем же ее принцип действия?

Причины коррозии

Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.

Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:

  1. Взаимодействии с водой.
  2. Наличии в воде щелочей, солей или кислот.

Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.

При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.

Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:

  • магистральные;
  • промысловые;
  • для систем отопления и жизнеобеспечения населения;
  • для сточной воды от промышленных предприятий.

Подверженность коррозии магистральных трубопроводных сетей

Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.

Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.

Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.

Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:

  1. От источников постоянного тока возникновение блуждающих токов.
  2. Воздействие микроорганизмов.
  3. Созданное напряжение провоцирует растрескивание металла.
  4. Хранение отходов.
  5. Соленые почвы.
  6. Температура транспортируемого вещества выше 300 °С.
  7. Углекислотная коррозия нефтепровода.
Читайте также:  Блюда приготовленные в скороварке

Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.

Электрохимическая коррозия от грунта

Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.

Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.

Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.

Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.

Коррозия под влиянием блуждающих токов

Ржавчина может возникать от переменного и постоянного потока электронов:

  • Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
  • Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.

Коррозионное растрескивание под влиянием напряжения

Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.

Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.

После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.

Коррозия под влиянием микроорганизмов

Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:

  1. Температурно-влажностные показатели.
  2. Давление.
  3. Наличие освещенности.
  4. Кислород.

При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.

Что такое электрохимическая защита

Электрохимическая защита трубопроводов от коррозии – это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.

Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.

Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.

Как классифицируется электрохимическая защита

Коррозия и защита магистральных трубопроводов и резервуаров от нее контролируются двумя способами:

  • К металлической поверхности подводиться источник от тока. Этот участок приобретает отрицательный заряд, то есть исполняет роль катода. Аноды – это инертные электроды, которые никакого отношения к конструктивному исполнению не имеют. Этот способ считается наиболее распространенным, и электрохимическая коррозия не возникает. Такая методика направлена на недопущение следующих разновидностей коррозий: питтинговой, по причине присутствия блуждающих токов, кристаллического типа нержавеющей стали, а также растрескиванию элементов из латуни.
  • Гальванический способ. Защита магистральных трубопроводов или протекторная защита осуществляется металлическими пластинами с большими показателями отрицательных зарядов, изготовленными из алюминия, цинка, магния либо их сплавов. Аноды – это два элемента, так называемые ингибиторы, при этом медленное разрушение протектора способствует поддержанию в изделии катодного тока. Протекторная защита используется крайне редко. ЭХЗ выполняется на изоляционное покрытие трубопроводов.

Об особенностях электрохимической защиты

Основной причиной разрушения трубопроводов является следствие коррозии металлических поверхностей. После образования ржавчины образовывают трещины, разрывы, каверны, которые постепенно увеличиваются в размерах и способствуют разрыву трубопровода. Это явление чаще происходит у магистралей, проложенных под землей, или соприкасающихся с грунтовыми водами.

Для замедления скорости коррозии следует снизить катодное напряжение на 0,3В. При таком раскладе, скорость коррозии не будет более 10 мкм/год, а это существенно продлить срок службы технических устройств.

Одна из значимых проблем – это наличие блуждающих токов в грунте. Такие токи возникают от заземлений зданий, сооружений, рельсовых путей и иных устройств. Тем более невозможно провести точную оценку, в каком месте они могут проявиться.

Для создания разрушающего воздействия достаточно заряда стальных трубопроводов положительным потенциалом по отношению к электролитическому окружению, к ним относятся магистрали, проложенные в грунте.

Для того чтобы обеспечить контур током необходимо подвести внешнее напряжение, параметры которого будут достаточными для пробивания сопротивления грунтового основания.

Как правило, подобные источники – это линии электропередач с показателями мощностей от 6 до 10 кВт. Если электрический ток невозможно подвести, то можно использовать дизельные или газовые генераторы. Монтер по защите подземных трубопроводов от коррозии перед выполнением работ должен быть ознакомлен с проектными решениями.

Катодная защита

Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:

  1. Анодная, выполненная в виде заземляющих проводников.
  2. Преобразователи постоянных потоков электронов.
  3. Оборудование пункта управления процессом и контроля за этим процессом.
  4. Кабельные и проводные соединения.

Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.

Достоинства технического устройства:

  • высокие характеристики мощности;
  • обновление режима работы после перегрузок через четверть минуты;
  • с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
  • герметичность высокоответственных соединений;
  • подключение устройства к дистанционному контролю за процессом.

Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.

Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.

Видео: катодная защита от коррозии – какой бывает и как выполняется?

Защита от коррозии обустройством дренажа

Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.

  1. Выполненный под землей.
  2. Прямой.
  3. С полярностями.
  4. Усиленный.

При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.

Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.

Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.

Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.

Ссылка на основную публикацию
Эпоксидная смола для рукоделия
Популярность эпоксидной смолы в наше время достигла невероятных высот. Ее используют как в профессиональном производстве, строительстве, так и в домашнем...
Электроды японские lb 52u цена
Информацию по наличию и остаткам уточняйте по телефону +7 (495) 363-38-10 D, мм: d 3,2 мм Фасовка: упаковка 5 кг...
Электрокамины каталог с ценами
Цены на электрокамины Название электрокамина Цена Royal Flame Vision 60 FX от 34 150 р. Royal Flame Fobos FX от...
Эпоксидная смола температура использования
Стандарт качества Описание Эпоксидные смолы выпускаются в жидком и твердом состоянии. Они термопластичны, но под влиянием различных отвердителей превращаются в...
Adblock detector